The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 6 Days Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
Analysis of bit operations in Euclid"s algorithm
a. Consider the ordinary "paper and pencil" algorithm for long division: dividing a by b, which yields a quotient q and remainder r. Show that this method requires O((1 + lg q) lg b) bit operations.
b. Define μ(a, b) = (1 + lg a)(1 + lg b). Show that the number of bit operations performed by EUCLID in reducing the problem of computing gcd(a, b) to that of computing gcd(b, a mod b) is at most c(μ(a, b) - μ(b, a mod b)) for some sufficiently large constant c > 0.
c. Show that EUCLID(a, b) requires O(μ(a, b)) bit operations in general and O(β2) bit operations when applied to two β-bit inputs.
Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------and----------- ac-----------qui-----------sit-----------ion----------- of----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n.P-----------lea-----------se -----------pin-----------g m-----------e o-----------n c-----------hat----------- I -----------am -----------onl-----------ine----------- or----------- in-----------box----------- me----------- a -----------mes-----------sag-----------e I----------- wi-----------ll