The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 1 Day Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
This problem provides a numerical example of encryption using a one-round version of DES. We start with the same bit pattern for the key K and the plaintext, namely:
Binary notation: 0000 0001 0010 0011 0100 0101 0110 01111000 1001 1010 1011 1100 1101 1110 1111
Hexadecimal notation: 0 1 2 3 4 5 6 7 8 9 A B C D E F
a. Derive K1 , the first-round sub key.
b. Derive, L0R0
c. Expand R0 to get, E[R0] where E[.] is the expansion function of Table 3.2.
d. Calculate A = E[R0] ⊕ K1 .
e. Group the 48-bit result of (d) into sets of 6 bits and evaluate the corresponding
S-box sub stitutions.
f. Concatenate the results of (e) to get a 32-bit result, .
g. Apply the permutation to get P(B) .
h. Calculate R1 = P(B) ⊕ L0 .
i. Write down the cipher rtext.
Table 3.2.
|
(a) Initial Permutation (IP) |
|||||||
|
58 |
50 |
42 |
34 |
26 |
18 |
10 |
2 |
|
60 |
52 |
44 |
36 |
28 |
20 |
12 |
4 |
|
62 |
54 |
46 |
38 |
30 |
22 |
14 |
6 |
|
64 |
56 |
48 |
40 |
32 |
24 |
16 |
8 |
|
57 |
49 |
41 |
33 |
25 |
17 |
9 |
1 |
|
59 |
51 |
43 |
35 |
27 |
19 |
11 |
3 |
|
61 |
53 |
45 |
37 |
29 |
21 |
13 |
5 |
|
63 |
55 |
47 |
39 |
31 |
23 |
15 |
7 |
Â
|
(b) Inverse Initial Permutation (IP–1) |
|||||||
|
40 |
8 |
48 |
16 |
56 |
24 |
64 |
32 |
|
39 |
7 |
47 |
15 |
55 |
23 |
63 |
31 |
|
38 |
6 |
46 |
14 |
54 |
22 |
62 |
30 |
|
37 |
5 |
45 |
13 |
53 |
21 |
61 |
29 |
|
36 |
4 |
44 |
12 |
52 |
20 |
60 |
28 |
|
35 |
3 |
43 |
11 |
51 |
19 |
59 |
27 |
|
34 |
2 |
42 |
10 |
50 |
18 |
58 |
26 |
|
33 |
1 |
41 |
9 |
49 |
17 |
57 |
25 |
Â
|
(c) Expansion Permutation (E) |
|||||
|
32 |
1 |
2 |
3 |
4 |
5 |
|
4 |
5 |
6 |
7 |
8 |
9 |
|
8 |
9 |
10 |
11 |
12 |
13 |
|
12 |
13 |
14 |
15 |
16 |
17 |
|
16 |
17 |
18 |
19 |
20 |
21 |
|
20 |
21 |
22 |
23 |
24 |
25 |
|
24 |
25 |
26 |
27 |
28 |
29 |
|
28 |
29 |
30 |
31 |
32 |
1 |
(d) Permutation Function (P)
|
16 |
7 |
20 |
21 |
29 |
12 |
28 |
17 |
|
1 |
15 |
23 |
26 |
5 |
18 |
31 |
10 |
|
2 |
8 |
24 |
14 |
32 |
27 |
3 |
9 |
|
19 |
13 |
30 |
6 |
22 |
11 |
4 |
25 |
Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------and----------- ac-----------qui-----------sit-----------ion----------- of----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n.P-----------lea-----------se -----------pin-----------g m-----------e o-----------n c-----------hat----------- I -----------am -----------onl-----------ine----------- or----------- in-----------box----------- me----------- a -----------mes-----------sag-----------e I----------- wi-----------ll