Maurice Tutor

(5)

$15/per page/Negotiable

About Maurice Tutor

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Algebra,Applied Sciences See all
Algebra,Applied Sciences,Biology,Calculus,Chemistry,Economics,English,Essay writing,Geography,Geology,Health & Medical,Physics,Science Hide all
Teaching Since: May 2017
Last Sign in: 398 Weeks Ago, 1 Day Ago
Questions Answered: 66690
Tutorials Posted: 66688

Education

  • MCS,PHD
    Argosy University/ Phoniex University/
    Nov-2005 - Oct-2011

Experience

  • Professor
    Phoniex University
    Oct-2001 - Nov-2016

Category > Computer Science Posted 23 Sep 2017 My Price 7.00

version of DES

This problem provides a numerical example of encryption using a one-round version of DES. We start with the same bit pattern for the key K and the plaintext, namely:

Binary notation: 0000 0001 0010 0011 0100 0101 0110 01111000 1001 1010 1011 1100 1101 1110 1111

Hexadecimal notation: 0 1 2 3 4 5 6 7 8 9 A B C D E F

a. Derive K1 , the first-round sub key.

b. Derive, L0R0

c. Expand R0 to get, E[R0] where E[.] is the expansion function of Table 3.2.

d. Calculate A = E[R0] ⊕ K1 .

e. Group the 48-bit result of (d) into sets of 6 bits and evaluate the corresponding

S-box sub stitutions.

f. Concatenate the results of (e) to get a 32-bit result, .

g. Apply the permutation to get P(B) .

h. Calculate R1 = P(B) ⊕ L0 .

i. Write down the cipher rtext.

Table 3.2.

(a) Initial Permutation (IP)

58

50

42

34

26

18

10

2

60

52

44

36

28

20

12

4

62

54

46

38

30

22

14

6

64

56

48

40

32

24

16

8

57

49

41

33

25

17

9

1

59

51

43

35

27

19

11

3

61

53

45

37

29

21

13

5

63

55

47

39

31

23

15

7

 

(b) Inverse Initial Permutation (IP–1)

40

8

48

16

56

24

64

32

39

7

47

15

55

23

63

31

38

6

46

14

54

22

62

30

37

5

45

13

53

21

61

29

36

4

44

12

52

20

60

28

35

3

43

11

51

19

59

27

34

2

42

10

50

18

58

26

33

1

41

9

49

17

57

25

 

(c) Expansion Permutation (E)

32

1

2

3

4

5

4

5

6

7

8

9

8

9

10

11

12

13

12

13

14

15

16

17

16

17

18

19

20

21

20

21

22

23

24

25

24

25

26

27

28

29

28

29

30

31

32

1

(d) Permutation Function (P)

16

7

20

21

29

12

28

17

1

15

23

26

5

18

31

10

2

8

24

14

32

27

3

9

19

13

30

6

22

11

4

25

Answers

(5)
Status NEW Posted 23 Sep 2017 09:09 AM My Price 7.00

Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------and----------- ac-----------qui-----------sit-----------ion----------- of----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n.P-----------lea-----------se -----------pin-----------g m-----------e o-----------n c-----------hat----------- I -----------am -----------onl-----------ine----------- or----------- in-----------box----------- me----------- a -----------mes-----------sag-----------e I----------- wi-----------ll

Not Rated(0)