Maurice Tutor

(5)

$15/per page/Negotiable

About Maurice Tutor

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Algebra,Applied Sciences See all
Algebra,Applied Sciences,Biology,Calculus,Chemistry,Economics,English,Essay writing,Geography,Geology,Health & Medical,Physics,Science Hide all
Teaching Since: May 2017
Last Sign in: 398 Weeks Ago, 2 Days Ago
Questions Answered: 66690
Tutorials Posted: 66688

Education

  • MCS,PHD
    Argosy University/ Phoniex University/
    Nov-2005 - Oct-2011

Experience

  • Professor
    Phoniex University
    Oct-2001 - Nov-2016

Category > Computer Science Posted 23 Sep 2017 My Price 8.00

DES algorithm

1. The 32-bit swap after the sixteenth iteration of the DES algorithm is needed to make the encryption process invertible by simply running the cipher text back through the algorithm with the key order reversed. Suppose the DES F function mapped every 32-bit input R, regardless of the value of the input K, to it still may not be entirely clear why the 32-bit swap is needed. To demonstrate why, solve the following exercises. First, some notation:

A?B = the concatenation of the bit strings A and B

Ti(R?L) = the transformation defined by the ith iteration of the encryption algorithm for 1≤I ≤16

TDi(R?L) = the transformation defined by the ith iteration of the encryption algorithm for 1 ≤ I≤ 16

T17(R?L) = L?R, where this transformation occurs after the sixteenth iteration of the encryption algorithm

a. Show that the composition TD1(IP(IP-1(T17(T16(L15?R15)))))  is equivalent to the transformation that interchanges the 32-bit halves, L15  and R15  .That is, show that

TD1(IP(IP-1(T17(T16(L15?R15))))) = R15 7L15

b. Now suppose that we did away with the final 32-bit swap in the encryption algorithm. Then we would want the following equality to hold:

TD1(IP(IP-1(T16(L15?R15)))) = L15 7R15

Does it?

2. Compare the initial permutation table (Table 3.2a) with the permuted choice one table (Table 3.4b). Are the structures similar? If so, describe the similarities. What conclusions can you draw from this analysis?

Table 3.2.

(a) Initial Permutation (IP)

58

50

42

34

26

18

10

2

60

52

44

36

28

20

12

4

62

54

46

38

30

22

14

6

64

56

48

40

32

24

16

8

57

49

41

33

25

17

9

1

59

51

43

35

27

19

11

3

61

53

45

37

29

21

13

5

63

55

47

39

31

23

15

7

 

(b) Inverse Initial Permutation (IP–1)

40

8

48

16

56

24

64

32

39

7

47

15

55

23

63

31

38

6

46

14

54

22

62

30

37

5

45

13

53

21

61

29

36

4

44

12

52

20

60

28

35

3

43

11

51

19

59

27

34

2

42

10

50

18

58

26

33

1

41

9

49

17

57

25

Answers

(5)
Status NEW Posted 23 Sep 2017 09:09 AM My Price 8.00

Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------and----------- ac-----------qui-----------sit-----------ion----------- of----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n.P-----------lea-----------se -----------pin-----------g m-----------e o-----------n c-----------hat----------- I -----------am -----------onl-----------ine----------- or----------- in-----------box----------- me----------- a -----------mes-----------sag-----------e I----------- wi-----------ll

Not Rated(0)