The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 5 Days Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
Here is an improved version of the scheme given in the previous problem. As before, we have a global elliptic curve, prime , and “generator” . Alice picks a private signing key XAand forms the public verifying key YA= XAG
.To sign a message M:
• Bob picks a value k.
• Bob sends Alice C1= kG.
• Alice sends Bob and the signature S = M – XAC1.
• Bob verifies that M = S + kYA.
a. Show that this scheme works. That is, show that the verification process produces an equality if the signature is valid.
b. Show that forging a message in this scheme is as hard as breaking (ElGamal) elliptic curve cryptography. (Or find an easier way to forge a message?)
c. This scheme has an extra “pass” compared to other cryptosystems and signature schemes we have looked at. What are some drawbacks to this?
Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------and----------- ac-----------qui-----------sit-----------ion----------- of----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n.P-----------lea-----------se -----------pin-----------g m-----------e o-----------n c-----------hat----------- I -----------am -----------onl-----------ine----------- or----------- in-----------box----------- me----------- a -----------mes-----------sag-----------e I----------- wi-----------ll