Maurice Tutor

(5)

$15/per page/Negotiable

About Maurice Tutor

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Algebra,Applied Sciences See all
Algebra,Applied Sciences,Biology,Calculus,Chemistry,Economics,English,Essay writing,Geography,Geology,Health & Medical,Physics,Science Hide all
Teaching Since: May 2017
Last Sign in: 398 Weeks Ago, 1 Day Ago
Questions Answered: 66690
Tutorials Posted: 66688

Education

  • MCS,PHD
    Argosy University/ Phoniex University/
    Nov-2005 - Oct-2011

Experience

  • Professor
    Phoniex University
    Oct-2001 - Nov-2016

Category > Management Posted 05 Oct 2017 My Price 7.00

greatest common divisor

Consider the problem of fi nding the greatest common divisor (gcd) of two positive integers a and b . The algorithm presented here is a variation of Euclid’s algorithm, which is based on the following theorem: 4 Theorem. If a and b are positive integers with a > b such that b is not a divisor of a , then gcd ( a , b ) = gcd ( b , a mod b ). This relationship between gcd ( a , b ) and gcd ( b , a mod b ) is the heart of the recursive solution. It specifi es how you can solve the problem of computing gcd ( a , b ) in terms of another problem of the same type. Also, if b does divide a , then b = gcd ( a , b ), so an appropriate choice for the base case is ( a mod b ) = 0.

This theorem leads to the following recursive defi nition:

The following function implements this recursive algorithm:

a. Prove the theorem.

b. What happens if b > a ?

c. How is the problem getting smaller? (That is, do you always approach a base case?) Why is the base case appropriate?

 

Answers

(5)
Status NEW Posted 05 Oct 2017 09:10 PM My Price 7.00

Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------and----------- ac-----------qui-----------sit-----------ion----------- of----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n.P-----------lea-----------se -----------pin-----------g m-----------e o-----------n c-----------hat----------- I -----------am -----------onl-----------ine----------- or----------- in-----------box----------- me----------- a -----------mes-----------sag-----------e I----------- wi-----------ll

Not Rated(0)
Relevent Questions