Alpha Geek

(8)

$10/per page/Negotiable

About Alpha Geek

Levels Tought:
University

Expertise:
Accounting,Algebra See all
Accounting,Algebra,Architecture and Design,Art & Design,Biology,Business & Finance,Calculus,Chemistry,Communications,Computer Science,Environmental science,Essay writing,Programming,Social Science,Statistics Hide all
Teaching Since: Apr 2017
Last Sign in: 438 Weeks Ago, 1 Day Ago
Questions Answered: 9562
Tutorials Posted: 9559

Education

  • bachelor in business administration
    Polytechnic State University Sanluis
    Jan-2006 - Nov-2010

  • CPA
    Polytechnic State University
    Jan-2012 - Nov-2016

Experience

  • Professor
    Harvard Square Academy (HS2)
    Mar-2012 - Present

Category > Engineering Posted 16 May 2017 My Price 7.00

Suppose that the random variables Y1 and Y2 have joint probability

Suppose that the random variables Y1 and Y2 have joint probability density function, f (y1, y2), given by (see Exercise 5.14)

a Show that the marginal density of Y1 is a beta density with α = 3 and β = 2.

b Derive the marginal density of Y2.

c Derive the conditional density of Y2 given Y1 = y1.

d Find P(Y2 1.1|Y1 =.60).

Exercise 5.14

Suppose that the random variables Y1 and Y2 have joint probability density function f (y1, y2) given by

a Verify that this is a valid joint density function.

b What is the probability that Y1 + Y2 is less than 1?

Answers

(8)
Status NEW Posted 16 May 2017 07:05 AM My Price 7.00

-----------

Attachments

file 1494920697-1530845_1_636304139974644676_The-random-variables.docx preview (111 words )
T-----------he -----------ran-----------dom----------- va-----------ria-----------ble-----------s -----------and----------- h-----------ave----------- th-----------e j-----------oin-----------t p-----------rob-----------abi-----------lit-----------y d-----------ens-----------ity----------- fu-----------nct-----------ion----------- ----------- Us-----------e t-----------he -----------giv-----------en -----------joi-----------nt -----------pro-----------bab-----------ili-----------ty -----------den-----------sit-----------y f-----------unc-----------tio-----------n o-----------f -----------and----------- a-----------nd ----------- sh-----------ow -----------tha-----------t t-----------he -----------var-----------iab-----------les----------- a-----------nd -----------are----------- de-----------pen-----------den-----------t. ----------- Fr-----------om -----------the----------- gi-----------ven----------- in-----------equ-----------ali-----------tie-----------s -----------we -----------hav-----------e, ----------- If----------- t-----------hen----------- -----------If -----------the-----------n ----------- If----------- th-----------en ----------- T-----------o s-----------how----------- th-----------at -----------the----------- a-----------nd -----------are----------- de-----------pen-----------den-----------t ,----------- sh-----------ow -----------tha-----------t .----------- Th-----------at -----------is,----------- th-----------e p-----------rod-----------uct----------- of----------- th-----------e m-----------arg-----------ina-----------l i-----------s n-----------ot -----------equ-----------al -----------to -----------the----------- jo-----------int----------- de-----------nsi-----------ty -----------fun-----------cti-----------on.----------- N-----------ow,----------- fr-----------om -----------the----------- de-----------fin-----------iti-----------on -----------of -----------mar-----------gin-----------al,----------- th-----------e m-----------arg-----------ina-----------l
Not Rated(0)