The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | Jul 2017 |
| Last Sign in: | 305 Weeks Ago |
| Questions Answered: | 15833 |
| Tutorials Posted: | 15827 |
MBA,PHD, Juris Doctor
Strayer,Devery,Harvard University
Mar-1995 - Mar-2002
Manager Planning
WalMart
Mar-2001 - Feb-2009
Assume the following dataset is given:
 (2,2), (4,4), (5,5), (6,6), (8,8),(9,9), (0,4), (4,0) .
K-Means is used with k=4 to cluster the dataset.
Â
Moreover, Manhattan distance is used as the distance function (formula below) to compute distances between centroids and objects in the dataset.
D ((x1, x2), (x1', x2')) = |x1-x1'| + |x2-x2|
Â
Further assume that K-Means's initial clusters C1, C2, C3, and C4 are as follows:
C1: {(2, 2), (4, 4), (6, 6)}Â Â Â Â
C2: {(0, 4), (4, 0)}
C3: {(5, 5), (9, 9)}
C4: {(8, 8}}
Â
Now apply the K-means algorithm and show the centroids and the clusters for each iteration.
----------- Â ----------- H-----------ell-----------o S-----------ir/-----------Mad-----------am ----------- Th-----------ank----------- yo-----------u f-----------or -----------you-----------r i-----------nte-----------res-----------t a-----------nd -----------buy-----------ing----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n. -----------Ple-----------ase----------- pi-----------ng -----------me -----------on -----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be----------- qu-----------ick-----------ly