The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 3 Days Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
Let X be a Poisson random variable with parameter λ.
(a) Show that
![]()
by using the result of Theoretical Exercise 15 and the relationship between Poisson and binomial random variables.
(b) Verify the formula in part (a) directly by making use of the expansion of e−λ + eλ.
Exercise 15
Suppose that n independent tosses of a coin having probability p of coming up heads are made. Show that the probability that an even number of heads results is 1 2 [1 + (q − p)n], where q = 1 − p. Do this by proving and then utilizing the identity
![]()
where [n/2] is the largest integer less than or equal to n/2. Compare this exercise with Theoretical Exercise 3.5 of Chapter 3.
Exercise 3.5
An event F is said to carry negative information about an event E, and we write F ↘ E, if
![]()
Prove or give counterexamples to the following assertions:

Â
Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------and----------- ac-----------qui-----------sit-----------ion----------- of----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n.P-----------lea-----------se -----------pin-----------g m-----------e o-----------n c-----------hat----------- I -----------am -----------onl-----------ine----------- or----------- in-----------box----------- me----------- a -----------mes-----------sag-----------e I----------- wi-----------ll