Maurice Tutor

(5)

$15/per page/Negotiable

About Maurice Tutor

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Algebra,Applied Sciences See all
Algebra,Applied Sciences,Biology,Calculus,Chemistry,Economics,English,Essay writing,Geography,Geology,Health & Medical,Physics,Science Hide all
Teaching Since: May 2017
Last Sign in: 399 Weeks Ago, 1 Day Ago
Questions Answered: 66690
Tutorials Posted: 66688

Education

  • MCS,PHD
    Argosy University/ Phoniex University/
    Nov-2005 - Oct-2011

Experience

  • Professor
    Phoniex University
    Oct-2001 - Nov-2016

Category > Management Posted 21 Oct 2017 My Price 4.00

cumulative probability distribution

A binomial distribution is known to have the following cumulative probability distribution: Pr[X ≤0] = 1/729, Pr[X ≤l] = 13/729, Pr[X ≤2] = 73/729, Pr[X ≤3] = 233/729, Pr[X ≤4] = 473/729, Pr[X ≤5] = 665/729, Pr[X≤6] = 1.0000.

a) What is n, the number of trials?

b) Find p and q, the probabilities of success and failure.

c) Verify that with these values of n, p and q the cumulative probabilities are as stated.

d) What is the probability that the number of successes, r, lies within one standard deviation of the mean?

e) What is the coefficient of variation?

Answers

(5)
Status NEW Posted 21 Oct 2017 08:10 PM My Price 4.00

Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------and----------- ac-----------qui-----------sit-----------ion----------- of----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n.P-----------lea-----------se -----------pin-----------g m-----------e o-----------n c-----------hat----------- I -----------am -----------onl-----------ine----------- or----------- in-----------box----------- me----------- a -----------mes-----------sag-----------e I----------- wi-----------ll

Not Rated(0)