Alpha Geek

(8)

$10/per page/Negotiable

About Alpha Geek

Levels Tought:
University

Expertise:
Accounting,Algebra See all
Accounting,Algebra,Architecture and Design,Art & Design,Biology,Business & Finance,Calculus,Chemistry,Communications,Computer Science,Environmental science,Essay writing,Programming,Social Science,Statistics Hide all
Teaching Since: Apr 2017
Last Sign in: 438 Weeks Ago, 1 Day Ago
Questions Answered: 9562
Tutorials Posted: 9559

Education

  • bachelor in business administration
    Polytechnic State University Sanluis
    Jan-2006 - Nov-2010

  • CPA
    Polytechnic State University
    Jan-2012 - Nov-2016

Experience

  • Professor
    Harvard Square Academy (HS2)
    Mar-2012 - Present

Category > Economics Posted 18 May 2017 My Price 7.00

Taylor’s theorem shows that any function can be approximated

Taylor’s theorem shows that any function can be approximated in the vicinity of any convenient point by a series of terms involving the function and its derivatives. Here we look at some applications of the theorem for functions of one and two variables.

a. Any continuous and differentiable function of a single variable, f (x), can be approximated near the point a by the formula

 width=

Using only the first three of these terms results in a quadratic Taylor approximation. Use this approximation together with the definition of concavity given in Equation 2.85 to show that any concave function must lie on or below the tangent to the function at point a.

b. The quadratic Taylor approximation for any function of two variables, f (x, y), near the point

(a, b) is given by

f(x, y) = f (a, b) + f1(a, b)(x –a) +f2(a, b)(y –b)

+0.5[f11(a,b)(x –a)2+2f12(a, b)(x –a)(y –b) +f22(y –b)2].

Use this approximation to show that any concave function (as defined by Equation 2.98) mustlie on or below its tangent plane at (a, b).

 

Answers

(8)
Status NEW Posted 18 May 2017 08:05 AM My Price 7.00

-----------

Attachments

file 1495098720-Answer.docx preview (215 words )
T-----------ayl-----------orâ-----------€™s----------- th-----------eor-----------em -----------sho-----------ws -----------tha-----------t a-----------ny -----------fun-----------cti-----------on -----------can----------- be----------- ap-----------pro-----------xim-----------ate-----------d i-----------n t-----------he -----------vic-----------ini-----------ty -----------of -----------any----------- co-----------nve-----------nie-----------nt -----------poi-----------nt -----------by -----------a s-----------eri-----------es -----------of -----------ter-----------ms -----------inv-----------olv-----------ing----------- th-----------e f-----------unc-----------tio-----------n a-----------nd -----------its----------- de-----------riv-----------ati-----------ves-----------. H-----------ere----------- we----------- lo-----------ok -----------at -----------som-----------e a-----------ppl-----------ica-----------tio-----------ns -----------of -----------the----------- th-----------eor-----------em -----------for----------- fu-----------nct-----------ion-----------s o-----------f o-----------ne -----------and----------- tw-----------o v-----------ari-----------abl-----------es.----------- a-----------. A-----------ny -----------con-----------tin-----------uou-----------s a-----------nd -----------dif-----------fer-----------ent-----------iab-----------le -----------fun-----------cti-----------on -----------of -----------a s-----------ing-----------le -----------var-----------iab-----------le,----------- f -----------(x)-----------, c-----------an -----------be -----------app-----------rox-----------ima-----------ted----------- ne-----------ar -----------the----------- po-----------int----------- a -----------by -----------the----------- fo-----------rmu-----------la ----------- -----------Usi-----------ng -----------onl-----------y t-----------he -----------fir-----------st -----------thr-----------ee -----------of -----------the-----------se -----------ter-----------ms
Not Rated(0)