The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | Jul 2017 |
| Last Sign in: | 304 Weeks Ago, 6 Days Ago |
| Questions Answered: | 15833 |
| Tutorials Posted: | 15827 |
MBA,PHD, Juris Doctor
Strayer,Devery,Harvard University
Mar-1995 - Mar-2002
Manager Planning
WalMart
Mar-2001 - Feb-2009
Here is another one for you! All the information is inside of the word doc.
Data Encryption Standards
Data Encryption Standards: DES and Triple DES (Part II)
In Module 2 SLP, we continue to cover DES.
Step 2: Encode each 64-bit block of data.
There is an initial permutation IP of the 64 bits of the message data M. This rearranges the bits according to the following table, where the entries in the table show the new arrangement of the bits from their initial order. The 58th bit of M becomes the first bit of IP. The 50th bit of M becomes the second bit of IP. The 7th bit of M is the last bit of IP.
                            IP
Â
           58   50  42   34   26  18   10   2
           60   52  44   36   28  20   12   4
           62   54  46   38   30  22   14   6
           64   56  48   40   32  24   16   8
           57   49  41   33   25  17    9   1
           59   51  43   35   27  19   11   3
           61   53  45   37   29  21   13   5
           63   55  47   39   31  23   15   7
Example: Applying the initial permutation to the block of text M, given previously, we get
MÂ = 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
IPÂ = 1100 1100 0000 0000 1100 1100 1111 11111111 0000 1010 1010 1111 0000 1010 1010
Here the 58th bit of M is "1", which becomes the first bit of IP. The 50th bit of M is "1", which becomes the second bit of IP. The 7th bit of M is "0", which becomes the last bit of IP.
Next divide the permuted block IP into a left half L0 of 32 bits, and a right half R0 of 32 bits.
Example: From IP, we get L0 and R0
L0Â = 1100 1100 0000 0000 1100 1100 1111 1111Â
R0Â = 1111 0000 1010 1010 1111 0000 1010 1010
We now proceed through 16 iterations, for 1<=n<=16, using a function f which operates on two blocks -- a data block of 32 bits and a key Kn of 48 bits -- to produce a block of 32 bits. Let + denote XOR addition, (bit-by-bit addition modulo 2). Then for n going from 1 to 16 we calculate
Ln = Rn-1Â
Rn = Ln-1 + f(Rn-1,Kn)
This results in a final block for n = 16, of L16R16. That is, in each iteration, we take the right 32 bits of the previous result and make them the left 32 bits of the current step. For the right 32 bits in the current step, we XOR the left 32 bits of the previous step with the calculation f .
Example: For n = 1, we have
K1Â = 000110 110000 001011 101111 111111 000111 000001 110010Â
L1Â =Â R0Â = 1111 0000 1010 1010 1111 0000 1010 1010Â
R1Â =Â L0Â +Â f(R0,K1)
It remains to explain how the function f works. To calculate f, we first expand each block Rn-1 from 32 bits to 48 bits. This is done by using a selection table that repeats some of the bits in Rn-1 . We'll call the use of this selection table the function E. Thus E(Rn-1) has a 32-bit input block, and a 48-bit output block.
Let E be such that the 48 bits of its output, written as 8 blocks of 6 bits each, are obtained by selecting the bits in its inputs in order according to the following table:
                   E BIT-SELECTION TABLE
Â
                32    1   2    3    4   5
                 4    5   6    7    8   9
                 8    9  10   11   12  13
                12   13  14   15   16  17
                16   17  18   19   20  21
                20   21  22   23   24  25
                24   25  26   27   28  29
                28   29  30   31   32   1
Thus the first three bits of E(Rn-1) are the bits in positions 32, 1, and 2 of Rn-1 while the last 2 bits of E(Rn-1) are the bits in positions 32 and 1.
Example: We calculate E(R0) from R0 as follows:
R0Â = 1111 0000 1010 1010 1111 0000 1010 1010Â
E(R0) = 011110 100001 010101 010101 011110 100001 010101 010101
(Note that each block of 4 original bits has been expanded to a block of 6 output bits.)
Next in the f calculation, we XOR the output E(Rn-1) with the key Kn:
Kn + E(Rn-1).
Example: For K1 , E(R0), we have
K1Â = 000110 110000 001011 101111 111111 000111 000001 110010Â
E(R0) = 011110 100001 010101 010101 011110 100001 010101 010101Â
K1+E(R0) = 011000 010001 011110 111010 100001 100110 010100 100111.
We have not yet finished calculating the function f . To this point we have expanded Rn-1 from 32 bits to 48 bits, using the selection table, and XORed the result with the key Kn . We now have 48 bits, or eight groups of six bits. We now do something strange with each group of six bits: we use them as addresses in tables called "S boxes". Each group of six bits will give us an address in a different S box. Located at that address will be a 4 bit number. This 4 bit number will replace the original 6 bits. The net result is that the eight groups of 6 bits are transformed into eight groups of 4 bits (the 4-bit outputs from the S boxes) for 32 bits total.
Write the previous result, which is 48 bits, in the form:
Kn + E(Rn-1) =B1B2B3B4B5B6B7B8,
where each Bi is a group of six bits. We now calculate
S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)
where Si(Bi) refers to the output of the i-th S box.
To repeat, each of the functions S1, S2,..., S8, takes a 6-bit block as input and yields a 4-bit block as output. The table to determine S1 is shown and explained below:
Â
                            S1
Â
                       Column Number
Row
No.   0 1  2 3  4 5  6 7  8 9 10 11 12 13 14 15
Â
 0  14 4 13 1  2 15 11 8  3 10  6 12  5 9  0  7
 1   0 15  7 4 14 2 13 1 10 6 12 11  9 5  3 8
 2   4 1 14 8 13 6  2 11 15 12  9 7  3 10  5 0
 3  15 12  8 2  4 9  1 7  5 11  3 14 10 0  6 13
If S1 is the function defined in this table and B is a block of 6 bits, then S1(B) is determined as follows: The first and last bits of B represent in base 2 a number in the decimal range 0 to 3 (or binary 00 to 11). Let that number be i. The middle 4 bits of B represent in base 2 a number in the decimal range 0 to 15 (binary 0000 to 1111). Let that number be j. Look up in the table the number in the i-th row and j-th column. It is a number in the range 0 to 15 and is uniquely represented by a 4 bit block. That block is the output S1(B) of S1 for the input B. For example, for input block B = 011011 the first bit is "0" and the last bit "1" giving 01 as the row. This is row 1. The middle four bits are "1101". This is the binary equivalent of decimal 13, so the column is column number 13. In row 1, column 13 appears 5. This determines the output; 5 is binary 0101, so that the output is 0101. Hence S1(011011) = 0101.
The tables defining the functions S1,...,S8 are the following:
                            S1
Â
    14 4 13 1  2 15 11 8  3 10  6 12  5 9  0 7
     0 15   7 4 14 2 13 1 10 6 12 11  9 5  3 8
     4 1 14 8 13 6  2 11 15 12  9 7  3 10  5 0
    15 12  8 2  4 9  1 7  5 11  3 14 10 0  6 13
Â
                            S2
Â
    15 1  8 14  6 11  3 4  9 7  2 13 12 0   5 10
     3 13  4 7 15 2  8 14 12 0  1 10  6 9 11 5
     0 14  7 11 10 4 13 1  5 8 12 6  9 3  2 15
    13 8 10 1  3 15  4 2 11 6  7 12  0 5 14 9
Â
                            S3
Â
    10 0  9 14  6 3 15 5  1 13 12 7 11 4  2 8
    13 7  0 9  3 4  6 10  2 8  5 14 12 11 15 1
    13 6  4 9  8 15  3 0 11 1  2 12  5 10 14 7
     1 10 13 0  6 9  8 7  4 15 14 3 11 5  2 12
Â
                            S4
Â
     7 13 14 3  0 6  9 10  1 2  8 5 11 12  4 15
    13 8 11 5  6 15  0 3  4 7  2 12  1 10 14 9
    10 6  9 0 12 11  7 13 15 1  3 14  5 2  8 4
     3 15  0 6 10 1 13 8  9 4  5 11 12 7  2 14
Â
                            S5
Â
     2 12  4 1  7 10 11 6  8 5  3 15 13 0 14 9
    14 11  2 12  4 7 13 1  5 0 15 10  3 9  8 6
     4 2  1 11 10 13  7 8 15 9 12 5  6 3  0 14
    11 8 12 7  1 14  2 13  6 15  0 9 10 4  5 3
Â
                            S6
Â
    12 1 10 15  9 2  6 8  0 13  3 4 14 7  5 11
    10 15  4 2  7 12  9 5  6 1 13 14  0 11  3 8
     9 14 15 5  2 8 12 3  7 0  4 10  1 13 11 6
     4 3  2 12  9 5 15 10 11 14  1 7  6 0  8 13
Â
                            S7
Â
     4 11  2 14 15 0  8 13  3 12  9 7  5 10  6 1
    13 0 11 7  4 9  1 10 14 3  5 12  2 15  8 6
     1 4 11 13 12 3  7 14 10 15  6 8  0 5  9 2
     6 11 13 8  1 4 10 7  9 5   0 15 14 2  3 12
Â
                            S8
Â
    13 2  8 4  6 15 11 1 10 9  3 14  5 0 12 7
     1 15 13 8 10 3  7 4 12 5  6 11  0 14  9 2
     7 11  4 1  9 12 14 2  0 6 10 13 15 3  5 8
     2 1 14 7  4 10  8 13 15 12  9 0  3 5  6 11
Example: For the first round, we obtain as the output of the eight S boxes:
K1Â +Â E(R0) = 011000 010001 011110 111010 100001 100110 010100 100111.
S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)Â = 0101 1100 1000 0010 1011 0101 1001 0111
The final stage in the calculation of f is to do a permutation P of the S-box output to obtain the final value of f:
f = P(S1(B1)S2(B2)...S8(B8))
The permutation P is defined in the following table. P yields a 32-bit output from a 32-bit input by permuting the bits of the input block.
                               P
Â
                        16  7 20 21
                        29 12 28 17
                         1 15 23 26
                         5 18 31 10
                         2  8 24 14
                        32 27  3  9
                        19 13 30  6
                        22 11  4 25
Example: From the output of the eight S boxes:
S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)Â = 0101 1100 1000 0010 1011 0101 1001 0111
we get
f = 0010 0011 0100 1010 1010 1001 1011 1011
R1 = L0 + f(R0 , K1 )
= 1100 1100 0000 0000 1100 1100 1111 1111Â
+ 0010 0011 0100 1010 1010 1001 1011 1011Â
= 1110 1111 0100 1010 0110 0101 0100 0100
In the next round, we will have L2 = R1, which is the block we just calculated, and then we must calculate R2 =L1 + f(R1, K2), and so on for 16 rounds. At the end of the sixteenth round we have the blocks L16 and R16. We then reverse the order of the two blocks into the 64-bit block
R16L16
and apply a final permutation IP-1 as defined by the following table:
                            IP-1
Â
           40    8  48   16   56  24   64  32
           39    7  47   15   55  23   63  31
           38    6  46   14    54  22   62  30
           37    5  45   13   53  21   61  29
           36    4  44   12   52  20   60  28
           35    3  43   11   51  19   59  27
           34    2  42   10   50  18   58  26
           33    1  41    9   49  17   57  25
That is, the output of the algorithm has bit 40 of the preoutput block as its first bit, bit 8 as its second bit, and so on, until bit 25 of the preoutput block is the last bit of the output.
Example:Â If we process all 16 blocks using the method defined previously, we get, on the 16th round,
L16Â = 0100 0011 0100 0010 0011 0010 0011 0100Â
R16Â = 0000 1010 0100 1100 1101 1001 1001 0101
We reverse the order of these two blocks and apply the final permutation to
R16L16Â = 00001010 01001100 11011001 10010101 01000011 01000010 00110010 00110100
IP-1Â = 10000101 11101000 00010011 01010100 00001111 00001010 10110100 00000101
which in hexadecimal format is
85E813540F0AB405.
This is the encrypted form of M = 0123456789ABCDEF: namely, C = 85E813540F0AB405.
Decryption is simply the inverse of encryption, following the same steps as above, but reversing the order in which the subkeys are applied.
Triple-DES
Triple-DES is just DES with two 56-bit keys applied. Given a plaintext message, the first key is used to DES- encrypt the message. The second key is used to DES-decrypt the encrypted message. (Since the second key is not the right key, this decryption just scrambles the data further.) The twice-scrambled message is then encrypted again with the first key to yield the final ciphertext. This three-step procedure is called triple-DES.
Triple-DES is just DES done three times with two keys used in a particular order. (Triple-DES can also be done with three separate keys instead of only two. In either case the resultant key space is about 2^112.)
The Strength of DES
Since its adoption as a federal standard, there have been lingering concerns about the level of security provided by DES. These concerns, by and large, fall into two areas: key size and the nature of the algorithm.
The Use of 56-Bit Keys
With a key length of 56 bits, there are 256 possible keys, which is approximately 7.2 * 1016 keys. Thus, on the face of it, a brute-force attack appears impractical. Assuming that, on average, half the key space has to be searched, a single machine performing one DES encryption per microsecond would take more than a thousand years to break the cipher.
However, the assumption of one encryption per microsecond is overly conservative. As far back as 1977, Diffie and Hellman postulated that the technology existed to build a parallel machine with 1 million encryption devices, each of which could perform one encryption per microsecond. This would bring the average search time down to about 10 hours. The authors estimated that the cost would be about $20 million in 1977 dollars.
With current technology, it is not even necessary to use special, purpose-built hardware. Rather, the speed of commercial, off-the-shelf processors threaten the security of DES.
To learn more about DES, check the following sites:
SLP Assignment
This problem provides a numerical example of encryption using a one-round version of DES. We start with the same bit pattern for the key K and the plaintext (the key and the plaintext are the same), namely:
The plaintext and key is:
    0000 0001 0010 0011 0100 0101 0110 0111
    1000 1001 1010 1011 1100 1101 1110 1111
SLP Assignment Expectations
Use information from the modular background readings as well as the given resources. Also, you could use any good quality resource you can find. Please cite all sources and provide a reference list at the end of your paper.
The following items will be assessed in particular:
----------- Â ----------- H-----------ell-----------o S-----------ir/-----------Mad-----------am ----------- Th-----------ank----------- yo-----------u f-----------or -----------you-----------r i-----------nte-----------res-----------t a-----------nd -----------buy-----------ing----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n. -----------Ple-----------ase----------- pi-----------ng -----------me -----------on -----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be----------- qu-----------ick-----------ly