The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | Jul 2017 |
| Last Sign in: | 304 Weeks Ago, 6 Days Ago |
| Questions Answered: | 15833 |
| Tutorials Posted: | 15827 |
MBA,PHD, Juris Doctor
Strayer,Devery,Harvard University
Mar-1995 - Mar-2002
Manager Planning
WalMart
Mar-2001 - Feb-2009
Consider a standard three-layer backpropagation net with d input units, nH hidden
units, c output units, and bias.
(a) How many weights are in the net?
(b) Consider the symmetry in the value of the weights. In particular, show that if
the sign ifÂ
ipped on every weight, the network function is unaltered.
(c) Consider now the hidden unit exchange symmetry. There are no labels on the
hidden units, and thus they can be exchanged (along with corresponding weights)
and leave network function unaected. Prove that the number of such equivalent
labellings | the exchange symmetry factor | is thus nH2nH . Evaluate this
factor for the case nH = 10.
----------- Â ----------- H-----------ell-----------o S-----------ir/-----------Mad-----------am ----------- Th-----------ank----------- yo-----------u f-----------or -----------you-----------r i-----------nte-----------res-----------t a-----------nd -----------buy-----------ing----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n. -----------Ple-----------ase----------- pi-----------ng -----------me -----------on -----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be----------- qu-----------ick-----------ly