The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 3 Days Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
E( u | x 1 , x 2 ) 5 0 Var( u | x 1 , x 2 ) 5 s 2 .
To make the question interesting, assume b 2 ? 0.
Suppose further that x 2 has a simple linear relationship with x 1 :
Show that
x 2 5 ? 0 1 ? 1 x 1 1 r
E( r | x 1 ) 5 0 Var( r | x 1 )5 ? 2
E( y | x 1 ) 5 ( b 0 1 b 2 ? 0 ) 1 ( b 1 1 b 2 ? 1 ) x 1 .
Under random sampling, what is the probability limit of the OLS estimator from the sim- ple regression of y on x 1 ? Is the simple regression estimator generally consistent for b 1 ?
If you run the regression of y on x 1 , x 2 , what will be the probability limit of the OLS estimator of the coefficient on x 2 ? Explain.
1
1
Using substitution, show that we can write
y 5 ( b 0 1 b 2 ? 0 ) 1 ( b 1 1 b 2 ? 1 ) x 1 1 u 1 b 2 r
It can be shown that, if we define v 5 u 1 b 2 r then E( v | x 1 ) 5 0, Var( v | x 1 ) 5 s 2 1 b 2 ? 2 . What consequences does this have for the t statistic on x 2 from the regression in
2
1
part (ii)?
What do you conclude about adding a nonlinear function of x 1 —in particular,
1 —in an attempt to detect omission of x 2 ?
x 2
Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------acq-----------uis-----------iti-----------on -----------of -----------my -----------pos-----------ted----------- so-----------lut-----------ion-----------.Pl-----------eas-----------e p-----------ing----------- me----------- on-----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be-----------