The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 2 Days Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
A plate of thickness 2L, surface area As, mass M, and specific heat cp, initially at a uniform temperature Ti, is suddenly heated on both surfaces by a convection process (T∞, h) for a period of time to, following which the plate is insulated. Assume that the midplane temperature does not reach T∞ within this period of time.
Â
(a) Assuming Bi ≫ 1 for the heating process, sketch and label, on T–x coordinates, the following temperature distributions: initial, steady-state (t →∞), T(x, to), and at two intermediate times between t to and t →∞.
(b) Sketch and label, on T – t coordinates, the midplane and exposed surface temperature distributions. (c) Repeat parts (a) and (b) assuming Bi ≪ 1 for the plate.
(d) Derive an expression for the steady-state temperature T(x, ∞) Tf, leaving your result in terms of plate parameters (M, cp), thermal conditions (Ti, T∞, h), the surface temperature T(L, t), and the heating time to.
Â
Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------acq-----------uis-----------iti-----------on -----------of -----------my -----------pos-----------ted----------- so-----------lut-----------ion-----------.Pl-----------eas-----------e p-----------ing----------- me----------- on-----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be-----------