The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | Jul 2017 |
| Last Sign in: | 305 Weeks Ago, 1 Day Ago |
| Questions Answered: | 15833 |
| Tutorials Posted: | 15827 |
MBA,PHD, Juris Doctor
Strayer,Devery,Harvard University
Mar-1995 - Mar-2002
Manager Planning
WalMart
Mar-2001 - Feb-2009
A vertex s of a directed graph G(V;E) is called a sink if for every vertex
v ∈ V - {s}, (v, s) ∈ E and (s, v) ∉ E. In other words, every vertex has an edge to s and no edge from
s. Write an algorithm that given a directed graph G, nds a sink or returns that one does not exist in
only O(|V|) time. The graph is given by adjacency matrix A. Notice that a running time of O(|V|) is
remarkable given that the input can have potentially O(|V|^2) edges.
----------- Â ----------- H-----------ell-----------o S-----------ir/-----------Mad-----------am ----------- Th-----------ank----------- yo-----------u f-----------or -----------you-----------r i-----------nte-----------res-----------t a-----------nd -----------buy-----------ing----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n. -----------Ple-----------ase----------- pi-----------ng -----------me -----------on -----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be----------- qu-----------ick-----------ly