SophiaPretty

(5)

$14/per page/Negotiable

About SophiaPretty

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Accounting,Algebra See all
Accounting,Algebra,Applied Sciences,Architecture and Design,Art & Design,Biology,Business & Finance,Calculus,Chemistry,Communications,Computer Science,Economics,Engineering,English,Environmental science,Essay writing Hide all
Teaching Since: Jul 2017
Last Sign in: 304 Weeks Ago, 4 Days Ago
Questions Answered: 15833
Tutorials Posted: 15827

Education

  • MBA,PHD, Juris Doctor
    Strayer,Devery,Harvard University
    Mar-1995 - Mar-2002

Experience

  • Manager Planning
    WalMart
    Mar-2001 - Feb-2009

Category > Computer Science Posted 12 Jan 2018 My Price 10.00

Functions, Recurrence Relations, and Mathematical Induction

Prove using Mathematical Induction 

1/2 + 1/(2^2) + ... 1/(2^n) = (2^n - 1) /(2^n)

** you can use the file attached if you didnt understand how i wrote it.. its # 10

 zyBook Additional Exercises:

Functions, Recurrence Relations, and Mathematical Induction

1.    Determine whether the rule describes a function with the given domain and target. You must provide a specific counterexample if you determine it is not a function. (Note that the symbol  refers to the principal (nonnegative) square root.)

a.    RR  where

b.     ZR  where 


For c, d, and e below, consider the function:
: {0,1}nZ (i.e., f maps elements from the set of all bit strings to the set of integers)

c.    where is the position of a 1 bit

d.    where is the position of the first 1 bit

e.    where is the number of 1 bits


2.    Give an example of a function from N to N that is

a.    one-to-one but not onto


b.    onto but not one-to-one


c.    neither one-to-one nor onto



d.    both onto and one-to-one, other than the identity function (this is a little tricky)



3.    Suppose RR and RR where  and . Find the formula for

 

4.    List the first six terms of the sequence defined by the recurrence relation and initial condition defined below. What do you notice about the terms of the sequence that is generated? (Extra challenges: Find a closed-form formula for f(n). Then prove, by mathematical induction, that your formula is correct.)

 



 

 

5.    Let  be defined recursively as indicated below. Find

a.   

b.   

 

6.    Give a recursive definition of , where  is a non-zero real number and  is a nonnegative integer.

 

 

7.    Is the sequencea solution of the recurrence relation if

a.   

b.   

c.   

d.   

 

8.    Find a non-recursive (closed form) formula that generates the given sequences: . Indicate the domain of the formula.

a.   


b.    Initial condition:   and recurrence relation:


 

 

9.     Suppose that and that both  and  are defined for all values of . Let  and . Evaluate each expression. If you do not have enough information, enter “unknown.”

a.   

b.   
 

c.   

d.   

e.   

f.    

g.   

h.   

i.     

 


 

 

10.  Prove using Mathematical Induction.





 

 

 


 

 

Double (aka Nested) Summations

 

11.  Compute each of the double (nested) sums (Refer to the video lecture in Canvas.)

 

 

a.      


           

b.   





c.   






d.   

 

 

 

Attachments:

Answers

(5)
Status NEW Posted 12 Jan 2018 02:01 PM My Price 10.00

-----------  ----------- H-----------ell-----------o S-----------ir/-----------Mad-----------am ----------- Th-----------ank----------- yo-----------u f-----------or -----------you-----------r i-----------nte-----------res-----------t a-----------nd -----------buy-----------ing----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n. -----------Ple-----------ase----------- pi-----------ng -----------me -----------on -----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be----------- qu-----------ick-----------ly

Not Rated(0)