Maurice Tutor

(5)

$15/per page/Negotiable

About Maurice Tutor

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Algebra,Applied Sciences See all
Algebra,Applied Sciences,Biology,Calculus,Chemistry,Economics,English,Essay writing,Geography,Geology,Health & Medical,Physics,Science Hide all
Teaching Since: May 2017
Last Sign in: 398 Weeks Ago, 2 Days Ago
Questions Answered: 66690
Tutorials Posted: 66688

Education

  • MCS,PHD
    Argosy University/ Phoniex University/
    Nov-2005 - Oct-2011

Experience

  • Professor
    Phoniex University
    Oct-2001 - Nov-2016

Category > Management Posted 02 Feb 2018 My Price 98.00

discrete-time model

Consider a discrete-time model where prices are completely unresponsive to unanticipated monetary shocks for one period and completely flexible thereafter. Suppose the IS equation is y = c − ar and that the condition for equilibrium in the money market is m − p = b + hy − ki. Here y, m, and p are the logs of output, the money supply, and the price level; r is the real interest rate; i is the nominal interest rate; and a, h, and k are positive parameters. Assume that initially m is constant at some level, which we normalize to zero, and that y is constant at its flexible-price level, which we also normalize to zero. Now suppose that in some period—period 1 for simplicity—the

To incorporate the effects of the knowledge that the money growth is temporary into our formal analysis, we would have to let the change in real money holdings at a given time depend not just on current holdings and current inflation, but on current holdings and the entire expected path of inflation. See n. 32. Monetary authority shifts unexpectedly to a policy of increasing m by some amount g > 0 each period.

(a) What are r, πe, i, and p before the change in policy?

(b) Once prices have fully adjusted, πe = g. Use this fact to find r, i, and p in period 2.

c) In period 1, what are i, r, p, and the expectation of inflation from period 1 to period 2, E1[p2] − p1?

Sol:

(a) Substituting the normalized, flexible-price level of output, y0 = 0, into the IS equation, y0 = c - ar0, gives us 0 = c - ar0.

Answers

(5)
Status NEW Posted 02 Feb 2018 07:02 PM My Price 98.00

Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------acq-----------uis-----------iti-----------on -----------of -----------my -----------pos-----------ted----------- so-----------lut-----------ion-----------.Pl-----------eas-----------e p-----------ing----------- me----------- on-----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be-----------

Not Rated(0)