Maurice Tutor

(5)

$15/per page/Negotiable

About Maurice Tutor

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Algebra,Applied Sciences See all
Algebra,Applied Sciences,Biology,Calculus,Chemistry,Economics,English,Essay writing,Geography,Geology,Health & Medical,Physics,Science Hide all
Teaching Since: May 2017
Last Sign in: 398 Weeks Ago, 2 Days Ago
Questions Answered: 66690
Tutorials Posted: 66688

Education

  • MCS,PHD
    Argosy University/ Phoniex University/
    Nov-2005 - Oct-2011

Experience

  • Professor
    Phoniex University
    Oct-2001 - Nov-2016

Category > Management Posted 04 Feb 2018 My Price 9.00

metric spaces

Is the function described in Example 5.4 uniformly continuous on X?

 

Example 5.4

 

Let (X1, d1) and (X2, d2) be metric spaces, let f: X1 → X2, and let c ∈ X1. Then the following three conditions are equivalent:

 

(a) f is continuous at c.

 

(b) If (xn) is any sequence in X1 such that (xn) converges to c, then (f(xn)) converges to f(c) in X2.

 

(c) For every neighborhood V of f(c) in X2, there exists a neighborhood U of c in X1 such that f(U) ⊆ V.

 

(a) ⇒ (b) Suppose f is continuous at c and let (xn) be a sequence in X1 such that xn → c. Given ε > 0, since f is continuous at c there exists

 

 

(c) ⇒ (a) Given any ε > 0, let V = N(f(c); ε). By our hypothesis in (c), there exists a neighborhood U = N(c; δ ) such that f (U ) ⊆ V. But then whenever d1(x, c) < δ="" we="" have="" x="">∈ U, so f (x) ∈ V and d2( f (x), f (c)) < ε.="" thus="" f="" is="" continuous="" at="">

 

 

 


Answers

(5)
Status NEW Posted 04 Feb 2018 07:02 PM My Price 9.00

Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------acq-----------uis-----------iti-----------on -----------of -----------my -----------pos-----------ted----------- so-----------lut-----------ion-----------.Pl-----------eas-----------e p-----------ing----------- me----------- on-----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be-----------

Not Rated(0)