Maurice Tutor

(5)

$15/per page/Negotiable

About Maurice Tutor

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Algebra,Applied Sciences See all
Algebra,Applied Sciences,Biology,Calculus,Chemistry,Economics,English,Essay writing,Geography,Geology,Health & Medical,Physics,Science Hide all
Teaching Since: May 2017
Last Sign in: 398 Weeks Ago, 1 Day Ago
Questions Answered: 66690
Tutorials Posted: 66688

Education

  • MCS,PHD
    Argosy University/ Phoniex University/
    Nov-2005 - Oct-2011

Experience

  • Professor
    Phoniex University
    Oct-2001 - Nov-2016

Category > Management Posted 12 Feb 2018 My Price 8.00

Weights of Supermodels

1.    Analyzing Weights of Supermodels Supermodels are sometimes criticized on the grounds that their low weights encourage unhealthy eating habits among young women. Listed below are the weights (in pounds) of nine randomly selected super- models.

 

125 (Taylor)            119 (Auermann)     128 (Schiffer)     128 (MacPherson)

 

119 (Turlington)     127 (Hall)               105 (Moss)          123 (Mazza)

 

115 (Hume)

 

Find each of the following:

 

a.  mean                                 b.  median

 

c.   mode                                 d.  midrange

 

e.   range                                  f.   variance

 

g.   standard deviation          h.  Q1:

 

i.   Q2:

 

j.   Q3:

 

k.     What is the level of measurement of these data (nominal, ordinal, interval, ratio)?

 

l.       Construct a boxplot for the data.

 

m.   Construct a 99% confidence interval for the population mean.

 

n.     Construct a 99% confidence interval for the standard deviation s.

 

o.     Find the sample size necessary to estimate the mean weight of all supermodels so that there is 99% confidence that the sample mean is in error by no more than 2 lb. Use the sample standard deviation s from part (g) as an estimate of the population standard deviation s.

 

p.     When women are randomly selected from the general population, their weights are normally distributed with a mean of 143 lb and a standard deviation of 29 lb (based on data from the National Health and Examination Survey). Based on the given sample values, do the weights of supermodels appear to be substantially less than the weights of randomly selected women? Explain.

 

 

 


Answers

(5)
Status NEW Posted 12 Feb 2018 08:02 PM My Price 8.00

Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------acq-----------uis-----------iti-----------on -----------of -----------my -----------pos-----------ted----------- so-----------lut-----------ion-----------.Pl-----------eas-----------e p-----------ing----------- me----------- on-----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be-----------

Not Rated(0)