The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 399 Weeks Ago, 1 Day Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
Figure P4.20 illustrates a cylindrical buoy floating in water with a mass density ρ. Assume that the center of mass of the buoy is deep enough so that the buoy motion is primarily vertical. The buoy mass is m and the diameter is D. Archimedes’ principle states that the buoyancy force acting on a floating object equals the weight of the liquid displaced by the object.
(a) Derive the equation of motion in terms of the variable x, which is the displacement from the equilibrium position.
(b) Obtain the expression for the buoy’s natural frequency.
(c) Compute the period of oscillation if the buoy diameter is 2ft and the buoy weighs 1000 lb. Take the mass density of fresh water to be ρ = 1.94 slug/ft3.

Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------acq-----------uis-----------iti-----------on -----------of -----------my -----------pos-----------ted----------- so-----------lut-----------ion-----------.Pl-----------eas-----------e p-----------ing----------- me----------- on-----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be-----------