The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 3 Days Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016

A smooth can C, having a mass of 2 kg, is lifted from a feed at A to a ramp at B by a forked rotating rod. If the rod maintains a constant angular motion of
= 0.5 rad/s, determine the force which the rod exerts on the can at the instant
= 30°. Neglect the effects of friction in the calculation. The ramp from A to B is circular, having a radius of 700 min.
| A. | F = 19.62 N |
| B. | F = 11.33 N |
| C. | F = 10.63 N |
| D. | F = 12.03 N |
View Answer Workspace Report Discuss in Forum
14.

The spool, which has a weight of 2lb, slides along the smooth horizontal spiral rod, r = (2
) ft, where
is in radians. If its angular rate of rotation is constant and equals
= 4 rad/s, determine the tangential force P needed to cause the motion and the normal force that the spool exerts on the rod at the instant
= 90°.
| A. | P = 0.499 lb, N = 5.03 lb |
| B. | P = 5.50 lb, N = 15.65 lb |
| C. | P = 3.35 lb, N = 2.43 lb |
| D. | P = 1.677 lb, N = 4.77 lb |
Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------acq-----------uis-----------iti-----------on -----------of -----------my -----------pos-----------ted----------- so-----------lut-----------ion-----------.Pl-----------eas-----------e p-----------ing----------- me----------- on-----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be-----------