The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 6 Days Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016

Â
ANSWER MUST BE
T2 = 285 K
Show transcribed image text 4.39 Refrigerant 134a enters an insulated diffuser as a saturated vapor at 80 degree F with a velocity of 1453.4 ft/s. At the exit, the temperature is 280 degree F and the velocity is negligible. The diffuser operates at steady state and potential energy effects can be neglected. Determine the exit pressure, in Ibf/in^2 4.40 Oxygen gas enters a well-insulated diffuser at 30 lbf/in^2, 440 degree R, with a velocity of 950 ft/s through a flow area of 2.0 in^2. At the exit, the flow area is 15 times the inlet area, and the velocity is 25 ft/s. The potential energy change from inlet to exit is negligible. Assuming ideal gas behavior for the oxygen and steady-state operation of the diffuser, determine the exit temperature, in degree R, the exit pressure, in lbf/in^2. , and the mass flow rate, in lb/s. 4.41 Air modeled as an ideal gas enters a well-insulated user operating at steady state at 270 K with a velocity of 180 m/s and exits with a velocity of 48.4 m/s. For negligible potential energy effects, determine the exit temperature, in K. 4.42 Steam enters a well-insulated turbine operating at steady state at 4 MPa with a specific enthalpy of 3015.4 kJ/kg and a velocity of 10 m/s. The steam expands to the turbine exit where the pressure is 0.07 MPa, specific enthalpy is 2431.7 kJ/kg, and the velocity is 90 m/s. The mass flow rate is 11.95 kg/s. Neglecting potential energy effects, determine the power developed by the turbine, in kW. 4.43 Air expands through a turbine from 8 bar, 960 K to 1 bar, 450 K. The inlet velocity is small compared to the exit velocity of 90 m/s. The turbine operates at steady state and develops a power output of 2500 kW. Heat transfer between the turbine and its surroundings and potential energy effects a. nannamie Modeling air as an ideal gas, calculate
Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------acq-----------uis-----------iti-----------on -----------of -----------my -----------pos-----------ted----------- so-----------lut-----------ion-----------.Pl-----------eas-----------e p-----------ing----------- me----------- on-----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be-----------