The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 1 Day Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
A homeowner, whose water pipes have frozen during a period of cold weather, decides to melt the ice by passing an electric current I through the pipe wall. The inner and outer radii of the wall are designated as r1 and r2, and its electrical resistance per unit length is designated as R’e (?/m). The pipe is well insulated on the outside, and during melting the ice (and water) in the pipe remain at a constant temperature Tm associated with the melting process.
(a) Assuming that steady-state conditions are reached shortly after application of the current, determine the form of the steady-state temperature distribution T(r) in the pipe wall during the melting process.
(b) Develop an expression for the time tm required to completely melt the ice. Calculate this time for I = 100 A, Re = 0.30 ?/m, and r1 = 50 mm.
Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------acq-----------uis-----------iti-----------on -----------of -----------my -----------pos-----------ted----------- so-----------lut-----------ion-----------.Pl-----------eas-----------e p-----------ing----------- me----------- on-----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be-----------