The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
University
| Teaching Since: | Apr 2017 |
| Last Sign in: | 438 Weeks Ago, 2 Days Ago |
| Questions Answered: | 9562 |
| Tutorials Posted: | 9559 |
bachelor in business administration
Polytechnic State University Sanluis
Jan-2006 - Nov-2010
CPA
Polytechnic State University
Jan-2012 - Nov-2016
Professor
Harvard Square Academy (HS2)
Mar-2012 - Present
7.13.  Precautionary savingwith constant-absolute-risk-aversion utility.Consider an    individual who lives      for     two           periods       and  has constant-absolute· risk-aversion utility, U = -e->·C, - e-rc,, y > 0. The interest rate is zero and the individual has no initial wealth, so the individual's lifetime budget con· straint is C, + C2 = Y,+ l 2 . Y, is certain, but Y2 isnormally distributed 1'ith mean Y2  and variance a2 .
( a) \Vil'h an instantaneous utility function u(C) = -e-,c,y > 0, what ls the si. gn of U'"(C)?
(b)Â Â Â Â Â
\Vhat is the individual's expected lifetime utility as a function of C1 and the exogenous parameters Y, , Y2 , a2, and y ? (Hint: See the hint in Prob· len17.5, part (b}.)
(c)    Find an expression for C1 in terms of Yi , Y2, a2, and y. \Vhat is c, if !'here is no uncertainrn How does an increase in uncertainty affect C1?
Â
-----------