The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
University
| Teaching Since: | Apr 2017 |
| Last Sign in: | 438 Weeks Ago, 2 Days Ago |
| Questions Answered: | 9562 |
| Tutorials Posted: | 9559 |
bachelor in business administration
Polytechnic State University Sanluis
Jan-2006 - Nov-2010
CPA
Polytechnic State University
Jan-2012 - Nov-2016
Professor
Harvard Square Academy (HS2)
Mar-2012 - Present
At a speed of 6 m ·s−1 the resistance to motion of a rotor-ship is 80 kN. It is propelled by two vertical cylindrical rotors, each 3 m diameter and 9 m high. If the actual circulation generated by the rotors is 50% of that calculated when viscosity and end effects are ignored, determine the magnitude and direction of the rotational speed of the rotor necessary when the ship travels steadily south-east at 6 m ·s−1 in a 14 m ·s−1 north-east wind. For these conditions use inviscid flow theory to determine the positions of the stagnation points and the difference between the maximum and minimum pressures. (Assume an air density of 1.225 kg · m−3.)
-----------