The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
University
| Teaching Since: | Apr 2017 |
| Last Sign in: | 438 Weeks Ago, 1 Day Ago |
| Questions Answered: | 9562 |
| Tutorials Posted: | 9559 |
bachelor in business administration
Polytechnic State University Sanluis
Jan-2006 - Nov-2010
CPA
Polytechnic State University
Jan-2012 - Nov-2016
Professor
Harvard Square Academy (HS2)
Mar-2012 - Present
Consider the following price data for TanCo stock in two different subperiods:
Subperiod A: 168.375; 162.875; 162.5; 161.625; 160.75; 157.75; 157.25; 157.75; 161.125;
162.5; 157.5; 156.625; 157.875; 155.375; 150.5; 155.75; 154.25; 155.875; 156; 152.75;
150.5; 150.75
Subperiod B: 122.5; 124.5; 121.875; 120.625; 119.5; 118.125; 117.75; 119.25; 122.25;
121.625; 120; 117.75; 118.375; 115.625; 117.75; 117.5; 118.5; 117.625; 114.625; 110.75
For each subperiod, calculate the annualized historical measure of stock volatility that could be used in pricing an option for TanCo. In your calculations, you may assume that there are 250 trading days in a year.
Suppose now that you decide to gather additional data for each subperiod. Specifically,
you obtain information for a call option with a current price of $12.25 and the follow- ing characteristics: X = 115; S = 120.625; time to expiration = 62 days; RFR = 7.42 percent; and dividend yield = 3.65 percent. Here the risk-free rate and dividend yields are stated on an annual basis. Use the volatility measure from Subperiod B and the Black-Scholes model to obtain the “fair value” for this call option. Based on your cal- culations, is the option currently priced as it should be? Explain.
-----------