Alpha Geek

(8)

$10/per page/Negotiable

About Alpha Geek

Levels Tought:
University

Expertise:
Accounting,Algebra See all
Accounting,Algebra,Architecture and Design,Art & Design,Biology,Business & Finance,Calculus,Chemistry,Communications,Computer Science,Environmental science,Essay writing,Programming,Social Science,Statistics Hide all
Teaching Since: Apr 2017
Last Sign in: 438 Weeks Ago, 5 Days Ago
Questions Answered: 9562
Tutorials Posted: 9559

Education

  • bachelor in business administration
    Polytechnic State University Sanluis
    Jan-2006 - Nov-2010

  • CPA
    Polytechnic State University
    Jan-2012 - Nov-2016

Experience

  • Professor
    Harvard Square Academy (HS2)
    Mar-2012 - Present

Category > Computer Science Posted 28 Apr 2017 My Price 5.00

Give a linear-time algorithm that takes as input

Give a linear-time algorithm that takes as input a directed acyclic graph G = (V, E) and two vertices s and t, and returns the number of paths from s to t in G. For example, in the directed acyclic graph of Figure 22.8, there are exactly four paths from vertex p to vertex v: pov, por yv, posr yv, and psr yv. (Your algorithm only needs to count the paths, not list them.)

Figure 22.8: A dag for topological sorting.

Answers

(8)
Status NEW Posted 28 Apr 2017 12:04 PM My Price 5.00

-----------

Attachments

file 1493381197-Answer.docx preview (229 words )
G-----------ive----------- a -----------lin-----------ear------------ti-----------me -----------alg-----------ori-----------thm----------- th-----------at -----------tak-----------es -----------as -----------inp-----------ut -----------a d-----------ire-----------cte-----------d a-----------cyc-----------lic----------- gr-----------aph----------- G----------- =----------- (V-----------, -----------E) -----------and----------- tw-----------o v-----------ert-----------ice-----------s -----------s -----------and----------- t-----------, a-----------nd -----------ret-----------urn-----------s t-----------he -----------num-----------ber----------- of----------- pa-----------ths----------- fr-----------omÂ----------- sÂ----------- to----------- t----------- i-----------n -----------G. -----------For----------- ex-----------amp-----------le,----------- in----------- th-----------e d-----------ire-----------cte-----------d a-----------cyc-----------lic----------- gr-----------aph----------- of----------- Fi-----------gur-----------e 2-----------2.8-----------, t-----------her-----------e a-----------re -----------exa-----------ctl-----------y f-----------our----------- pa-----------ths----------- fr-----------om -----------ver-----------tex----------- p----------- t-----------o v-----------ert-----------exÂ----------- v:----------- p-----------ov,----------- p-----------or -----------yv,----------- p-----------osr----------- yv-----------, a-----------ndÂ----------- ps-----------r y-----------v. -----------(Yo-----------ur -----------alg-----------ori-----------thm----------- on-----------ly -----------nee-----------ds -----------to -----------cou-----------nt -----------the----------- pa-----------ths-----------, n-----------ot -----------lis-----------t t-----------hem-----------.) ----------- -----------Fig-----------ure----------- 22-----------.8:----------- A -----------dag----------- fo-----------r t-----------opo-----------log-----------ica-----------l
Not Rated(0)