Alpha Geek

(8)

$10/per page/Negotiable

About Alpha Geek

Levels Tought:
University

Expertise:
Accounting,Algebra See all
Accounting,Algebra,Architecture and Design,Art & Design,Biology,Business & Finance,Calculus,Chemistry,Communications,Computer Science,Environmental science,Essay writing,Programming,Social Science,Statistics Hide all
Teaching Since: Apr 2017
Last Sign in: 438 Weeks Ago, 5 Days Ago
Questions Answered: 9562
Tutorials Posted: 9559

Education

  • bachelor in business administration
    Polytechnic State University Sanluis
    Jan-2006 - Nov-2010

  • CPA
    Polytechnic State University
    Jan-2012 - Nov-2016

Experience

  • Professor
    Harvard Square Academy (HS2)
    Mar-2012 - Present

Category > Computer Science Posted 28 Apr 2017 My Price 5.00

Is this algorithm a c-approximation algorithm

In this problem, we will consider the following simple randomized algorithm for the Vertex Cover Algorithm.

Start with S = ∅

While S is not a vertex cover,

Select an edge e not covered by S

Select one end of e at random (each end equally likely)

Add the selected node to S

Endwhile

We will be interested in the expected cost of a vertex cover selected by this algorithm.

(a) Is this algorithm a c-approximation algorithm for the Minimum Weight Vertex Cover Problem for some constant c? Prove your answer.

(b) Is this algorithm a c-approximation algorithm for the Minimum Cardinality Vertex Cover Problem for some constant c? Prove your answer.

(Hint: For an edge, let pe denote the probability that edge e is selected as an uncovered edge in this algorithm. Can you express the expected value of the solution in terms of these probabilities? To bound the value of an optimal solution in terms of the pe probabilities, try to bound the sum of the probabilities for the edges incident to a given vertex v, namely

 

Answers

(8)
Status NEW Posted 28 Apr 2017 04:04 PM My Price 5.00

-----------

Attachments

file 1493397061-Answer.docx preview (299 words )
I-----------n t-----------his----------- pr-----------obl-----------em,----------- we----------- wi-----------ll -----------con-----------sid-----------er -----------the----------- fo-----------llo-----------win-----------g s-----------imp-----------le -----------ran-----------dom-----------ize-----------d a-----------lgo-----------rit-----------hm -----------for----------- th-----------e V-----------ert-----------ex -----------Cov-----------er -----------Alg-----------ori-----------thm-----------. -----------Sta-----------rt -----------wit-----------h S----------- = -----------∅----------- W-----------hil-----------e S----------- is----------- no-----------t a----------- ve-----------rte-----------x c-----------ove-----------r, ----------- Se-----------lec-----------t a-----------n e-----------dge----------- e -----------not----------- co-----------ver-----------ed -----------by -----------S -----------Sel-----------ect----------- on-----------e e-----------nd -----------of -----------e a-----------t r-----------and-----------om -----------(ea-----------ch -----------end----------- eq-----------ual-----------ly -----------lik-----------ely-----------) -----------Add----------- th-----------e s-----------ele-----------cte-----------d n-----------ode----------- to----------- S ----------- En-----------dwh-----------ile----------- W-----------e w-----------ill----------- be----------- in-----------ter-----------est-----------ed -----------in -----------the----------- ex-----------pec-----------ted----------- co-----------st -----------of -----------a v-----------ert-----------ex -----------cov-----------er -----------sel-----------ect-----------ed -----------by -----------thi-----------s a-----------lgo-----------rit-----------hm.----------- (-----------a) -----------Is -----------thi-----------s a-----------lgo-----------rit-----------hm -----------a c------------ap-----------pro-----------xim-----------ati-----------on -----------alg-----------ori-----------thm-----------
Not Rated(0)