The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
University
| Teaching Since: | Apr 2017 |
| Last Sign in: | 438 Weeks Ago, 2 Days Ago |
| Questions Answered: | 9562 |
| Tutorials Posted: | 9559 |
bachelor in business administration
Polytechnic State University Sanluis
Jan-2006 - Nov-2010
CPA
Polytechnic State University
Jan-2012 - Nov-2016
Professor
Harvard Square Academy (HS2)
Mar-2012 - Present
Metallic elements are essential components of many important enzymes operating within our bodies. Carbonic anhydrase, which contains Zn2+in its active site, is responsible for rapidly interconverting dissolved CO2 and bicarbonate ion, HCO3-.The zinc in carbonic anhydrase is tetrahedrally coordinated by three neutral nitrogen-containing groups and a water molecule. The coordinated water molecule has a pKa of 7.5, which is crucial for the enzyme’s activity. (a) Draw the active site geometry for the Zn(II) center in carbonic anhydrase, just writing “N” for the three neutral nitrogen ligands from the protein. (b) Compare the pKa of carbonic anhydrase’s active site with that of pure water; which species is more acidic? (c) When the coordinated water to the Zn(II) center in carbonic anhydrase is deprotonated, what ligands are bound to the Zn(II) center? Assume the three nitrogen ligands are unaffected. (d) The pKa of [Zn(H2O)6]2+ is 10. Suggest an explanation for the difference between this pKa and that of carbonic anhydrase. (e) Would you expect carbonic anhydrase to have a deep color, like hemoglobin and other metal-ion containing proteins do? Explain.
-----------