The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
University
| Teaching Since: | Apr 2017 |
| Last Sign in: | 438 Weeks Ago, 1 Day Ago |
| Questions Answered: | 9562 |
| Tutorials Posted: | 9559 |
bachelor in business administration
Polytechnic State University Sanluis
Jan-2006 - Nov-2010
CPA
Polytechnic State University
Jan-2012 - Nov-2016
Professor
Harvard Square Academy (HS2)
Mar-2012 - Present
Refer to Toxicity experiment Problem 14.12. Use the groups given there to conduct a deviance goodness of lit rest of the appropriateness of logistic regression model (14.20). Control the risk of a Type I error at .01. State the alternative decision rule and conclusion.
Problem 14.12
Toxicity experiment. In an experiment testing the effect of a toxic substance, 1,500 experimental insects were divided at random into six groups of 250 each. The insects in each group were exposed to a fixed dose of the toxic substance. A day later, each insect was observed. Death from exposure was scored I, and survival was scored O. The results are shown below; Xj denotes the dose level (on a logarithmic scale) administered to the insects in group j and fj denotes the number of insects that died out of the 250 (n j) in the group.

Logistic regression model (14.20) is assumed to be appropriate.
a. Plot the estimated proportions Pj = Y.j/n j against X j .Does the plot support the analyst's belief that the logistic response function is appropriate?
b. Find the maximum likelihood estimates of ß0 and ß1. State the fitted response function.
c. Obtain a scatter plot of the data with the estimated proportions from part (a), and superimpose the fitted logistic C response function from part (b). Does the fitted logistic response function appear to fit well?
d. Obtain exp(b1) and interpret this number.
e. What is the estimated probability that an insect dies when the dose level is X = 3.5?
f. What is the estimated median lethal dose-that is, the dose for which 50 percent of the experimental insects are expected to die?
Â
Â
Â
Â
-----------