The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 2 Days Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
Let Y1, Y2, . . . , Yn be independent and identically distributed random variables with discrete probability function given by

where 0 1. Let Ni denote the number of observations equal to i for i = 1, 2, 3.
a Derive the likelihood function L(θ) as a function of N1, N2, and N3.
b Find the most powerful test for testing H0 : θ = θ0 versus Ha : θ = θa , where θa > θ0. Show that your test specifies that H0 be rejected for certain values of 2N1 + N2.
c How do you determine the value of k so that the test has nominal level α? You need not do the actual computation. A clear description of how to determine k is adequate.
d Is the test derived in parts (a)–(c) uniformly most powerful for testing H0 : θ = θ0 versus Ha :θ > θ0? Why or why not?
Â
Hel-----------lo -----------Sir-----------/Ma-----------dam----------- Â----------- Th-----------ank----------- Yo-----------u f-----------or -----------usi-----------ng -----------our----------- we-----------bsi-----------te -----------and----------- ac-----------qui-----------sit-----------ion----------- of----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n. -----------Ple-----------ase----------- pi-----------ng -----------me -----------on -----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill-----------