The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 6 Days Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
In this problem, we demonstrate that for CMAC, a variant that XORs the second key after applying the final encryption doesn’t work. Let us consider this for the case of the message being an integer multiple of the block size. Then, the variant can be expressed as VMAC(K, M) = CBC(K, M)Â
K1 Now suppose an adversary is able to ask for the MACs of three messages: the message0 = 0n where is the cipher block size; the message 1 = 1n ; and the message 1 || 0. As a result of these three queries, the adversary gets T0 = CBC(K, 0)Â
 K1; T1 = CBC(K, 1)Â
 K1 and T2 = CBC(K, [CBC(K, 1)])Â
 K1 . Show that the adversary can compute the correct MAC for the (unqueried) message0 || (T0Â
T1)
Hel-----------lo -----------Sir-----------/Ma-----------dam----------- Â----------- -----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------acq-----------uis-----------iti-----------on -----------of -----------my -----------sol-----------uti-----------on.-----------Ple-----------ase----------- pi-----------ng -----------me -----------on -----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be----------- ca-----------tch-----------