The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 2 Days Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
Speed bumps are used to force drivers to slow down. Figure P3.20 is a model of a car going over a speed bump. Using the data from Example 2.4.2 and an undamped model of the suspension system (i.e., k = 4 x 105 N/m, m = 1007 kg), find an expression for the maximum relative deflection of the car’s mass versus the velocity of the car. Model the bump as a half sine of length 40 cm and height 20 cm. Note that this is a movingbase problem.

Example 2.4.2
A common example of base motion is the single-degree-of-freedom model of an automobile driving over a road or an airplane taxiing over a runway, indicated in Figure 2.17. The road (or runway) surface is approximated as sinusoidal in cross section providing a base motion displacement of

Hel-----------lo -----------Sir-----------/Ma-----------dam----------- Â----------- -----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------acq-----------uis-----------iti-----------on -----------of -----------my -----------sol-----------uti-----------on.-----------Ple-----------ase----------- pi-----------ng -----------me -----------on -----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be----------- ca-----------tch-----------