Maurice Tutor

(5)

$15/per page/Negotiable

About Maurice Tutor

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Algebra,Applied Sciences See all
Algebra,Applied Sciences,Biology,Calculus,Chemistry,Economics,English,Essay writing,Geography,Geology,Health & Medical,Physics,Science Hide all
Teaching Since: May 2017
Last Sign in: 398 Weeks Ago, 2 Days Ago
Questions Answered: 66690
Tutorials Posted: 66688

Education

  • MCS,PHD
    Argosy University/ Phoniex University/
    Nov-2005 - Oct-2011

Experience

  • Professor
    Phoniex University
    Oct-2001 - Nov-2016

Category > Computer Science Posted 27 Jul 2017 My Price 10.00

Slot-size bound for chaining

Slot-size bound for chaining

Suppose that we have a hash table with n slots, with collisions resolved by chaining, and suppose that n keys are inserted into the table. Each key is equally likely to be hashed to each slot. Let M be the maximum number of keys in any slot after all the keys have been inserted. Your mission is to prove an O(lg n/ lg lg n) upper bound on E [M], the expected value of M.

a. Argue that the probability Qkthat exactly k keys hash to a particular slot is

given by width=

b. Let Pkbe the probability that M = k, that is, the probability that the slot containing the most keys contains k keys. Show that Pk≤ nQk.

c. Use Stirling’s approximation, equation (3.18), to show that Qk< ek/kk.

 width=

Equation 3.18

d. Show that there exists a constant c > 1 such that Qk0< 1/n3for k0= c lg n/ lg lg n. Conclude that Pk< 1/n2for k ≥k0= c lg n/ lg lg n.

e. Argue that

 width=

Conclude that E [M] = O(lg n/ lg lg n).

Answers

(5)
Status NEW Posted 27 Jul 2017 11:07 PM My Price 10.00

Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------acq-----------uis-----------iti-----------on -----------of -----------my -----------sol-----------uti-----------on.-----------Ple-----------ase----------- pi-----------ng -----------me -----------on -----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be----------- ca-----------tch-----------

Not Rated(0)