Maurice Tutor

(5)

$15/per page/Negotiable

About Maurice Tutor

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Algebra,Applied Sciences See all
Algebra,Applied Sciences,Biology,Calculus,Chemistry,Economics,English,Essay writing,Geography,Geology,Health & Medical,Physics,Science Hide all
Teaching Since: May 2017
Last Sign in: 398 Weeks Ago, 2 Days Ago
Questions Answered: 66690
Tutorials Posted: 66688

Education

  • MCS,PHD
    Argosy University/ Phoniex University/
    Nov-2005 - Oct-2011

Experience

  • Professor
    Phoniex University
    Oct-2001 - Nov-2016

Category > Computer Science Posted 28 Jul 2017 My Price 11.00

Transposition sorting networks

Transposition sorting networks

A comparison network is a transposition network if each comparator connects adjacent lines, as in the network in Figure 27.3.

a. Show that any transposition sorting network with n inputs has Ω(n2) comparators.

b. Prove that a transposition network with n inputs is a sorting network if and only if it sorts the sequence ?n, n - 1,..., 1?. (Hint: Use an induction argument analogous to the one in the proof of Lemma 27.1.)

An odd-even sorting network on n inputs ?a1,a2,...,an? is a transposition sorting network with n levels of comparators connected in the "brick-like" pattern illustrated in Figure 27.13.

As can be seen in the figure, for i = 1, 2,..., n and d = 1, 2,..., n, line i is connected by a depthd comparator to line j = i + (-1)i+d if 1 ≤ j ≤ n.

Figure 27.13: An odd-even sorting network on 8 inputs.

c. Prove that odd-even sorting networks actually sort.

Answers

(5)
Status NEW Posted 28 Jul 2017 12:07 AM My Price 11.00

Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------acq-----------uis-----------iti-----------on -----------of -----------my -----------sol-----------uti-----------on.-----------Ple-----------ase----------- pi-----------ng -----------me -----------on -----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be----------- ca-----------tch-----------

Not Rated(0)