The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 5 Days Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
In a way, the central limit theorem can be thought of as a kind of “grand central station.” It is a connecting hub or center for a great deal of statistical work. Put in a very elementary way, the central limit theorem states that as the sample size n increases, the distribution of the sample mean
will always approach a normal distribution, no matter where the original x variable came from. For most people, it is the complete generality of the central limit theorem that is so awe inspiring: It applies to practically everything. List and discuss at least three variables from everyday life for which you expect the variable x itself not to follow a normal or bell-shaped distribution. Then discuss what would happen to the sampling distribution
if the sample size were increased. Sketch diagrams of the
distributions as the sample size n increases.
Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------acq-----------uis-----------iti-----------on -----------of -----------my -----------sol-----------uti-----------on.-----------Ple-----------ase----------- pi-----------ng -----------me -----------on -----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be----------- ca-----------tch-----------