The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 5 Days Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
1. Let T be a tree whose nodes store strings. Give an algorithm that computes and prints, for every internal node v of T, the string stored at v and the height of the subtree rooted at v.
2. Design algorithms for the following operations for a binary tree T.
• preorderNext(v): return the node visited after node v in a preorder traversal of T.
• inorderNext(v): return the node visited after node v in an inorder traversal of T.
• postorderNext(v): return the node visited after node v in a postorder traversal of T.
What are the worst-case running times of your algorithms?
3. For each node v in a tree T, let pre(v) be the rank of v in a preorder traversal of T, let post(v) be the rank of v in a postorder traversal of T, let depth(v) be the depth of v, and let desc(v) be the number of descendents of v, not counting v itself. Derive a formula defining post(v) in terms of desc(v), depth(v), and pre(v), for each node v in T.
Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------acq-----------uis-----------iti-----------on -----------of -----------my -----------sol-----------uti-----------on.-----------Ple-----------ase----------- pi-----------ng -----------me -----------on -----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be----------- ca-----------tch-----------