ComputerScienceExpert

(11)

$18/per page/

About ComputerScienceExpert

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Applied Sciences,Calculus See all
Applied Sciences,Calculus,Chemistry,Computer Science,Environmental science,Information Systems,Science Hide all
Teaching Since: Apr 2017
Last Sign in: 103 Weeks Ago, 3 Days Ago
Questions Answered: 4870
Tutorials Posted: 4863

Education

  • MBA IT, Mater in Science and Technology
    Devry
    Jul-1996 - Jul-2000

Experience

  • Professor
    Devry University
    Mar-2010 - Oct-2016

Category > Math Posted 20 Apr 2017 My Price 7.00

Problem Set 15

Hi, could you please help me solving the question number 2 in the attached files? thank you!

 

 

Problem Set 15
1. Let Zi ⊆ RSN , i = 1, . . . , n be a collection of zero measure sets. Show that
the union Zi also has zero measure.
2. Let f : [a, b] → R be a bounded, integrable function.
(a) Show that the graph of f , Γ(f ) := {(x, f (x)) : x ∈ [a, b]} ⊆ R2 has
zero content.
(b) If f is non-negative, show that S = {(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ f (x)}
Rb
is measurable, and m(S) = a f (x)dx.
3. Show that if f : R → R2 is a C 1 function, then for any interval I ⊆ R,
f (I) has zero Jordan measure.
4. If S = {x1 , . . . , xn } is a finite set consisting of precisely n-elements, show
that S has zero Jordan measure.
5. Let f : [a, b] → R be a Riemann integrable function. If g : [a, b] → R
is another function and S = {x : f (x) 6= g(x)} contains exactly n-points,
show that g is also Riemann integrable. [Note: You must prove this from
scratch. If you wish to invoke a corollary or result from class, you must
first prove it.] 1

latex_136.pdf

Attachments:

Answers

(11)
Status NEW Posted 20 Apr 2017 06:04 AM My Price 7.00

-----------

Attachments

file 1492671218-Solutions file 2.docx preview (51 words )
H-----------ell-----------o S-----------ir/-----------Mad-----------am ----------- Th-----------ank----------- yo-----------u f-----------or -----------you-----------r i-----------nte-----------res-----------t a-----------nd -----------buy-----------ing----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n. -----------Ple-----------ase----------- pi-----------ng -----------me -----------on -----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be----------- qu-----------ick-----------ly -----------onl-----------ine----------- an-----------d g-----------ive----------- yo-----------u e-----------xac-----------t f-----------ile----------- an-----------d t-----------he -----------sam-----------e f-----------ile----------- is----------- al-----------so -----------sen-----------t t-----------o y-----------our----------- em-----------ail----------- th-----------at -----------is -----------reg-----------ist-----------ere-----------d o-----------n -----------THI-----------S W-----------EBS-----------ITE-----------. ----------- Th-----------ank----------- yo-----------u -----------
Not Rated(0)