The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 6 Days Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
Modify Euclid"s algorithm so that given integers m; n as input, it outputs integers a; b such that am + bn = g = gcd(m; n). This is called the extended Euclid"s algorithm.
(a) Use the LNP to show that if g = gcd(m; n), then there exist a; b such that am + bn = g.
(b) Design Euclid"s extended algorithm, and prove its correctness.
(c) The usual Euclid"s extended algorithm has a running time polynomial in min{m; n}; show that this is the running time of your algorithm, or modify your algorithm so that it runs in this time.
Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------and----------- ac-----------qui-----------sit-----------ion----------- of----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n.P-----------lea-----------se -----------pin-----------g m-----------e o-----------n c-----------hat----------- I -----------am -----------onl-----------ine----------- or----------- in-----------box----------- me----------- a -----------mes-----------sag-----------e I----------- wi-----------ll