The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 6 Days Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
2 This is a more general version of Problem C.1. Let Y1, Y2, …, Yn be n pairwise uncorrelated random variables with common mean m and common variance 2. Let Y¯ denote the sample
average.
(i) Define the class of linear estimators of m by
Wa a1Y1 a2Y2 … anYn,
where the ai are constants. What restriction on the ai is needed for Wa to be an unbiased estimator of m?
(ii) Find Var(Wa).
(iii) For any numbers a1, a2, …, an, the following inequality holds: (a1 a2 …
an)2/n a1 a2 … an. Use this, along with parts (i) and (ii), to show that
2 2 2
¯ ¯
Var(Wa) Var(Y) whenever Wa is unbiased, so that Y is the best linear unbiased esti-
mator. [Hint: What does the inequality become when the ai satisfy the restriction from part (i)?]
Hel-----------lo -----------Sir-----------/Ma-----------dam-----------Tha-----------nk -----------You----------- fo-----------r u-----------sin-----------g o-----------ur -----------web-----------sit-----------e a-----------nd -----------acq-----------uis-----------iti-----------on -----------of -----------my -----------pos-----------ted----------- so-----------lut-----------ion-----------.Pl-----------eas-----------e p-----------ing----------- me----------- on-----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill----------- be-----------