SmartExpert

(118)

$30/per page/Negotiable

About SmartExpert

Levels Tought:
Elementary,Middle School,High School,College,University,PHD

Expertise:
Accounting,Business & Finance See all
Accounting,Business & Finance,Economics,English,HR Management,Math Hide all
Teaching Since: Apr 2017
Last Sign in: 56 Weeks Ago, 4 Days Ago
Questions Answered: 7570
Tutorials Posted: 7352

Education

  • BS,MBA, PHD
    Adelphi University/Devry
    Apr-2000 - Mar-2005

Experience

  • HOD ,Professor
    Adelphi University
    Sep-2007 - Apr-2017

Category > Science Posted 11 Jul 2017 My Price 22.00

Assignment 5

Q1

A simply supported beam has a concentrated downward force P at a distance of a from the left support, as shown in the figure below. The flexural rigidity EI is constant. Find the equation of the Elastic Curve by successive integration.

 

[5 Marks]

 

 

 

 

 

       

 

Q2

Determine the rotations at A and B due to an applied moment MB on the beam, as shown in the figure below. Use the Method of Virtual Work.

 

[4 Marks]

 

 

 

 

 

       

 

Q3

Find the strain energy stored per unit volume for the materials listed below when they are axially stressed to their respective proportional limits.

 

Material

Proportional Limit (N/mm2)

Modulus of Elasticity Proportional Limit (N/mm2)

Mild Steel

247

2.06 x 105

Aluminium

412

7.20 x 104

Rubber

2.06

2.06

 

 

[3 Marks]

 

 

 

 

 

       

 

Q4

As shown in the figure below, find the downward deflection of the end C caused by the applied force of 2 kN in the structure. Neglect deflection caused by shear. Let E = 7 x 107 kN/m2.

 

[5 Marks]

 

 

 

 

 

       

 

Q5

For the loaded beam, as shown in the figure below, determine the magnitude of the counter weight Q for which the maximum absolute value of the bending moment is as small as possible. If this beam section is 150 mm x 200mm, determine the maximum bending stress. Neglect the weight of the beam

 

[5 Marks]

 

 

 

 

 

       

 

Q6

A wooden beam with sectional dimensions of 150 mm x 300 mm, carries the loading as shown in the figure below. Determine the maximum shearing and bending stress for the beam

 

[6 Marks]

 

 

 

 

 

       

 

Q7

For the box beam shown in the figure below, determine the maximum intensity w of the distributed loading that can be safely supported if the permissible stresses in bending and shear are 10 N/mm2 and 0.75 N/mm2 respectively

 

[5 Marks]

 

 

 

 

 

       

 

Q8

A beam of rectangular section 450 mm wide and 750 mm deep has            a span of 6 metres. The beam is subjected to a uniformly distributed load of 20 kN per metre run (including the self-weight of the beam) over the whole span. The beam is also subjected to a longitudinal axial compressive load of 1500 kN. Find the extreme fibre stresses at the middle section span.

 

[5 Marks]

 

 

 

 

 

       

 

Q9

A hollow alloy tube 5 metres long with external and internal diameters equal to 40 mm and 25 mm respectively, was found to extend by 6.4 mm under a tensile load of 60 kN. Find the buckling load for the tube when it is used as a column with both ends pinned. Also find the safe compressive load for the tube with a Factor of Safety of 4.

 

[4 Marks]

 

 

 

 

 

       

 

Q10

A cantilever beam of length l carrying a distributed load varies uniformly from zero at the free end to w per unit run at the fixed end. Find the slope and downward deflection of the free end B

 

[8 Marks]

 

 

 

 

 

       

Attachments:

Answers

(118)
Status NEW Posted 11 Jul 2017 09:07 AM My Price 22.00

A-----------ssi-----------gnm-----------ent----------- 5 ----------- ----------- -----------

Attachments

file 1499766336-Answers 10 Questions.docx preview (818 words )
Q-----------1A -----------sim-----------ply----------- su-----------ppo-----------rte-----------d b-----------eam----------- ha-----------s a----------- co-----------nce-----------ntr-----------ate-----------d d-----------own-----------war-----------d f-----------orc-----------e P----------- a-----------t a----------- di-----------sta-----------nce----------- of----------- a -----------fro-----------m t-----------he -----------lef-----------t s-----------upp-----------ort-----------, a-----------s s-----------how-----------n i-----------n t-----------he -----------fig-----------ure----------- b-----------elo-----------w. -----------The----------- fl-----------exu-----------ral----------- ri-----------gid-----------ity----------- EI----------- is----------- co-----------nst-----------ant-----------. F-----------ind----------- th-----------e e-----------qua-----------tio-----------n o-----------f t-----------he ----------- El-----------ast-----------ic -----------cur-----------ve -----------by -----------suc-----------ces-----------siv-----------e i-----------nte-----------gra-----------tio-----------n. ----------- An-----------swe-----------r: ----------- Th-----------e r-----------adi-----------us -----------of -----------cur-----------vat-----------ure----------- of----------- a -----------cur-----------ve -----------y=f-----------(x)----------- is----------- gi-----------ven----------- by-----------: -----------r=(-----------[1+-----------(dy-----------/dx-----------)^2-----------]^(-----------3/2-----------))/-----------(d^-----------2y/-----------dx^-----------2) -----------= E-----------I/M----------- S-----------inc-----------e d-----------efl-----------ect-----------ion----------- of----------- be-----------ams----------- is----------- so-----------o s-----------mal-----------l, -----------dy/-----------dx -----------squ-----------are-----------d i-----------s v-----------ery----------- sm-----------all----------- th-----------ere-----------for-----------e t-----------he
Not Rated(0)