The world’s Largest Sharp Brain Virtual Experts Marketplace Just a click Away
Levels Tought:
Elementary,Middle School,High School,College,University,PHD
| Teaching Since: | May 2017 |
| Last Sign in: | 398 Weeks Ago, 6 Days Ago |
| Questions Answered: | 66690 |
| Tutorials Posted: | 66688 |
MCS,PHD
Argosy University/ Phoniex University/
Nov-2005 - Oct-2011
Professor
Phoniex University
Oct-2001 - Nov-2016
Explain what adjustments if any need to be made in Dijkstra’s algorithm and/or in an underlying graph to solve the following problems.
a. Solve the single-source shortest-paths problem for directed weighted graphs.
b. Find a shortest path between two given vertices of a weighted graph or digraph. (This variation is called the single-pair shortest-path problem.)
c. Find the shortest paths to a given vertex from each other vertex of a weighted graph or digraph. (This variation is called the single-destination shortest-paths problem.)
d. Solve the single-source shortest-paths problem in a graph with nonnegative numbers assigned to its vertices (and the length of a path defined as the sum of the vertex numbers on the path).
Hel-----------lo -----------Sir-----------/Ma-----------dam----------- Â----------- Th-----------ank----------- Yo-----------u f-----------or -----------usi-----------ng -----------our----------- we-----------bsi-----------te -----------and----------- ac-----------qui-----------sit-----------ion----------- of----------- my----------- po-----------ste-----------d s-----------olu-----------tio-----------n. -----------Ple-----------ase----------- pi-----------ng -----------me -----------on -----------cha-----------t I----------- am----------- on-----------lin-----------e o-----------r i-----------nbo-----------x m-----------e a----------- me-----------ssa-----------ge -----------I w-----------ill-----------